Трансивер (от англ. Transceiver, акроним от слов transmitter – передатчик и receiver – приемник) – это съемный приемо-передатчик, предназначенный для использования в активном сетевом оборудовании таком, как маршрутизаторы, коммутаторы, транспондеры, медиаконвертеры. Оптический трансивер конвертирует передаваемые сигналы из внутренней среды сетевого оборудования в транспортную оптическую или электрическую среды передачи.

Виды трансиверов

Классифицировать трансиверы можно по нескольким характеристикам:

  1. Среда передачи
  2. Форм-фактор трансивера
  3. Скорость передачи
  4. Технология передачи

Схема типов трансиверов

Основным параметром, от которого во многом зависит форм-фактор модуля, его скорость и технология передачи является – среда передачи. Существует две среды передачи: оптоволоконная, к которой относятся одномодовые и многомодовые оптические волокна и электрическая, к которой можно отнести витую пару и твинкоаксиальный кабель.

Оптоволоконная среда передачи

Оптическое волокно — среда для передачи световых сигналов. Представляет собой тонкий стеклянный провод (жила). Волокно которого состоит из внутренней сердцевины (ядра), по которой распространяется свет, и окружающей ее оболочки. Любые дополнительные покрытия (оболочки) являются защитными и служат для защиты волокна от физических воздействий.

Оптоволоконная среда передачи

На рисунке видно, что свет, проходящий через сердцевину к оболочке, полностью отражается от границы двух этих сред. Данное явление называется полное внутреннее отражение. Именно за счет этого явления свет может преодолевать большие расстояния по ОВ.

Волокна делятся по типу на два вида:

  • Многомодовое — это волокно с большим диаметром сердцевины, по которому может распространяться несколько световых мод. В современных многомодовых волокнах диаметр сердцевины может быть 50 мкм и 62,5 мкм. Диаметр оболочки может составлять 125 или 250 мкм.
  • Одномодовое — волокно с малым диаметром сердцевины, по которому может распространяться только одна световая мода. В современных одномодовых волокнах диаметр сердцевины составляет 9 мкм. Диаметр оболочки может составлять 125 мкм или 250 мкм.

Фото типов волокон

В рамках многомодовых волокон свет может распространяться на расстояние до двух километров. Данный вид оптических волокон используется для локальных подключений, где расстояние между конечными точками не превышает 300 метров. На основе многомодового волокна построены трансиверы типа AOC, а также системы уплотнения SWDM (Short Wavelength Division Multiplexing).

Одномодовое волокно более популярно в современных телекоммуникациях, так как позволяет передавать данные на расстояния до 160 километров, а также строить протяженные системы уплотнения DWDM.

Электрическая среда передачи

Электрическая среда передачи – это совокупность телекоммуникационных кабелей, в которых для передачи информации используется металлический проводник/проводники, по которым подается электрический ток.

По типу телекоммуникационные кабели делятся на два вида:

  • Витая пара — кабель на медной основе, объединяющий в оболочке одну или более пар проводников. Каждая пара представляет собой два перевитых вокруг друг друга изолированных медных провода. В рамках телекома, витой парой зачастую называют двух парные (четыре жилы) и четырех парные (восемь жил) кабеля.
  • Твинаксиальный (от англ. twin-axial) кабель – это коаксиальный кабель с двумя параллельными проводниками, заключенные в общий экран.

Необходимо заметить, что твинаксиальный кабель практически не встречается вне трансиверов типа Direct Attach Copper. Кабели из витой пары встречаются очень часто, как в быту – соединения личного компьютера с домашним роутером, так и в отрасли в целом, так как это самый популярный способ организации локальных низкоскоростных соединений. Примерно в 2016 году широкое распространение получил 10GE Copper – это связано с выходом на рынок трансиверов SFP+ 10GE Copper.

О форм-факторах и скоростях передачи в рамках рубрики «Обзоры оборудования» выходило несколько статей, чтобы не растягивать вступление предлагаем ознакомиться с ними по ссылке, также более подробное описание технологий xWDM Вы можете прочитать по ссылке.

Изучить принципы работы и особенности трансиверов Direct Attach Copper можно по ссылке, а трансиверов Active Optical Cable в данной статье, ссылка.

Как выбрать трансивер?

Необходимость в приобретении оптических трансиверов может возникнуть по нескольким причинам:

  • Замена вышедшего из строя модуля;
  • Модернизация существующей линии связи;
  • Проектирование новой линии связи.

Если речь идет о замене вышедшего из строя трансивера, то необходимую модель подобрать несложно, нужно правильно «прочитать» маркировку сломанного устройства и на основании этого подобрать такую же модель или аналог. Более подробно про маркировку ниже.

При модернизации существующей линии связи выбор необходимых модулей становится значительно сложнее. Для начала необходимо определиться с задачей, что есть в распоряжении и чего хочется добиться в итоге модернизации.

Самое простое и самое важное с чего стоит начать, это параметры имеющейся трассы, а именно затухания по трассе, в идеале на длинах волн 1310 нм и 1550 нм. Зная эти значения, можно сузить спектр подходящего оборудования и выбрать конкретную технологию передачи данных.

Если речь идет о расширении емкости системы уплотнения CWDM или DWDM, то необходимо знать есть ли «свободные» длины волн в мультиплексоре и трансиверы, с каким оптическим бюджетом работают на этой линии.

В том случае, если модернизация носит глобальный характер, например, переход от 1 Гбит/с к 100 Гбит/с, рекомендуем Вам обратиться в компании, занимающиеся расчётом и продажей телекоммуникационного оборудования. Эта рекомендация связана с тем, что без специальных знаний спроектировать такое расширения сети сложно, и при недостаточной компетентности можно совершить серьезные ошибки, которые могут привести к некорректной работе организованных каналов передачи.

Проектирование новой линии связи в принципе не отличается от модернизации уже существующей. В данном случае, также необходимо изначально обрисовать для себя итоговой результат и уже после этого начинать выбор необходимого оборудования. Совет по передаче расчёта новой трассы специализированным инженерам в данном варианте также актуален.

Маркировка трансиверов

Каждый трансивер имеет заводскую маркировочную этикетку, на которой в обязательном порядке содержится информация о марке, модели (артикуле устройства) и серийный номер. Дополнительно на этикетке производитель может разместить информацию: о скорости передачи, длине волны передатчика, типе транспортной среды (тип волокна, например), наличии дополнительного функционала, такого как DDM.

Примеры этикеток различных модулей

При необходимости идентифицировать имеющийся «на руках» приемопередающий модуль, проще всего занести информацию о марке и модели с этикетки трансивера в поисковую интернет систему и получить полное техническое описание устройства.

Фото модуля Finisar и его технические спецификации

В случае, если информация на маркировочной наклейке развернутая и включает в себя описание характеристик трансивера, а доступ в интернет отсутствует, можно постараться идентифицировать трансивер по имеющейся на этикетке информации.

Фото этикетки трансивера и кратких технических описаний

Также достаточно развернутую информацию о модуле можно узнать из диагностических данных получаемых коммутатором из прошивки трансивера. В зависимости от марки и модели активного сетевого оборудования объем предоставляемой информации может меняться, но в микрокоде оптического трансивера содержится следующая информация:

  1. Форм-фактор;
  2. Тип оптического коннектора;
  3. Протокол передачи;
  4. Скорость передачи;
  5. Дальность передачи;
  6. Марка производителя;
  7. Модель трансивера;
  8. Длина волны передатчика.

Скриншота лога и спецификация трансивера

Совместимость трансиверов

Часто перед Пользователями встает вопрос: «А будет ли работать новый трансивер уже с имеющимся?». Чтобы утвердительно ответить на этот вопрос, необходимо соблюсти следующие условия:

  1. Одинаковая скорость передачи;
  2. Одинаковая или парная длина волны передачи;
  3. Соответствие среды передачи;
  4. Поддержка коммутатором.

Совместимость по скорости передачи

Как известно, форм-фактор трансивера не влияет на совместимость с техническим аналогом. Например, двухволоконный SFP 1.25 Гбит/с трансивер полностью совместим со своим более старым аналогом двухволоконным GBIC 1.25 Гбит/с трансивером или трансивер WDM SFP+ 10 Гбит/с 1270/1330 нм совместим с парным трансивером WDM XFP 10 Гбит/с 1330/1270 нм. Но если в первом примере изменить скорость SFP трансивера, то пара модулей не заработает (то есть двухволоконный SFP 4.25 Гбит/с FiberChannel модуль не совместим с двухволоконным GBIC 1.25 Гбит/с модулем). Это происходит из-за несогласованности скоростей передачи, протоколы передачи в данном случае являются второстепенными. Например, можно взять пару двухволоконных SFP модулей для Ethernet сетей, но скорость передачи одной будет 1,25 Гбит/с (GigabitEthernet), а второй 100 Мбит/с (FastEthernet), такая пара не заработает без дополнительных настроек коммутаторов.

Таким образом, можно резюмировать, что при выборе трансивера необходимо соблюдать одни и те же скорость передачи и протокол передачи, при этом форм-фактор трансиверов не влияет на их совместимость друг с другом.

Согласованность длин волн

Этот параметр наиболее важен при выборе WDM трансиверов, так как трансиверы работают в парах со строго обозначенными длинами волн приема и передачи, но и для двухволоконных модулей этот параметр так же лучше соблюдать. Разберем для начала длины волны WDM трансиверов. Ниже приведена таблица с длинами волн, скоростью передачи и дальностью передачи. Видно, что для некоторых трансиверов для одной и той же скорости и дальности передачи существуют две разные пары модулей по длине волны, которые несовместимы друг с другом.

Дальность

передачи

Тип трансивера
WDM SFP WDM SFP+ WDM XFP WDM SFP28
3 км Tx: 1310/ Rx: 1550 нм Tx: 1270/ Rx: 1330 нм Tx: 1270/ Rx: 1330 нм
Tx: 1550/ Rx: 1310 нм Tx: 1330/ Rx: 1270 нм Tx: 1330/ Rx: 1270 нм
3 км Tx: 1310/ Rx: 1490 нм
Tx: 1490/ Rx: 1310 нм
10 км Tx: 1310/ Rx: 1550 нм Tx: 1270/ Rx: 1330 нм Tx: 1270/ Rx: 1330 нм Tx: 1270/ Rx: 1330 нм
Tx: 1550/ Rx: 1310 нм Tx: 1330/ Rx: 1270 нм Tx: 1330/ Rx: 1270 нм Tx: 1330/ Rx: 1270 нм
10 км Tx: 1310/ Rx: 1490 нм
Tx: 1490/ Rx: 1310 нм
20 км Tx: 1310/ Rx: 1550 нм Tx: 1270/ Rx: 1330 нм Tx: 1270/ Rx: 1330 нм
Tx: 1550/ Rx: 1310 нм Tx: 1330/ Rx: 1270 нм Tx: 1330/ Rx: 1270 нм
20 км Tx: 1310/ Rx: 1490 нм
Tx: 1490/ Rx: 1310 нм
40 км Tx: 1310/ Rx: 1550 нм Tx: 1270/ Rx: 1330 нм Tx: 1270/ Rx: 1330 нм
Tx: 1550/ Rx: 1310 нм Tx: 1330/ Rx: 1270 нм Tx: 1330/ Rx: 1270 нм
60 км Tx: 1490/ Rx: 1550 нм Tx: 1270/ Rx: 1330 нм Tx: 1270/ Rx: 1330 нм
Tx: 1550/ Rx: 1490 нм Tx: 1330/ Rx: 1270 нм Tx: 1330/ Rx: 1270 нм
80 км Tx: 1490/ Rx: 1550 нм Tx: 1490/ Rx: 1550 нм Tx: 1490/ Rx: 1550 нм
Tx: 1550/ Rx: 1490 нм Tx: 1550/ Rx: 1490 нм Tx: 1550/ Rx: 1490 нм
120 км Tx: 1490/ Rx: 1550 нм
Tx: 1550/ Rx: 1490 нм
120 км Tx: 1510/ Rx: 1570 нм
Tx: 1570/ Rx: 1510 нм
140 км Tx: 1490/ Rx: 1550 нм
Tx: 1550/ Rx: 1490 нм
160 км Tx: 1490/ Rx: 1550 нм
Tx: 1550/ Rx: 1490 нм

У двухволоконных модулей строгой парности нет, но несоблюдение единой длины волны может вызвать перекосы в оптическом бюджете канала, так как длины волн 1310 нм и 1550 нм имеют разные показатели погонного затухания в оптических волокнах.

Данный пункт в основном касается двухволоконных модулей, так как именно этот тип трансиверов может быть заточен для передачи информации по многомодовому и одномодовому волокну. Остальные виды оптических трансиверов рассчитаны на передачу только по одномодовому волокну.

По многомодовому волокну могут передаваться сигналы из первого (850 нм) и второго (1310) окон прозрачности, а по одномодовому сигналы из второго (1310 нм) и третьего (1550 нм), то есть общие длины волн для MMF и SMF это 1310 нм. Это значит, что при выборе двухволоконного модуля необходимо учитывать не только длину волны передатчика, но и волокно, под которое разработан трансивер.

Поддержка трансивера активным сетевым оборудованием

После проверки параметров трансиверов необходимо удостовериться, что имеющийся у Вас коммутатор совместим и поддерживает выбранный трансивер. Одна из самых банальных ошибок – это перепутать порт SFP с портом SFP+, т.к. они визуально не отличаются, узнать тип портов можно или по спецификации на оборудование, или при помощи диагностической команды, которая покажет все имеющиеся порты и их тип.

Но есть более сложная вещь – список поддерживаемых трансиверов. Это значит, что даже обладая, к примеру, портами SFP+ коммутатор может не поддерживать работу SFP+ ZR. Этот список можно получить, опросив коммутатор соответствующей диагностической командой.

Скриншот Cisco support list

Или изучить техническую спецификацию коммутатора, но в данном случае необходимо помнить, что в зависимости от версии операционной системы список поддерживаемых трансиверов может изменяться, таким образом, лучше еще проверить документацию на операционную систему коммутатора.

Отдельно необходимо выделить трансиверы SFP/SFP+ Copper и DAC, так как с этими модулями речь зачастую идет о hardware совместимости. И информацию о поддержке этих трансиверов можно получить только из технической документации на сетевое устройство, так как важна поддержка определенного интерфейса, на базе которого построен трансивер.

Это не касается оптических трансиверов в связи с тем, что они в большей своей части строятся на одном интерфейсе, и проблемы с поддержкой и совместимостью в их случае можно отнести к software ограничениям, которые при необходимости можно решить сменой прошивки трансивер, подробнее про этот процесс по ссылке.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *