Оптическое волокно – это тонкая стеклянная нить круглого сечения, предназначенная для передачи информационных сигналов по средствам световых импульсов в инфракрасном диапазоне. Конструктивно оптический световод представляет собой коаксиальную структуру, состоящую из сердцевины и оболочки, покрытых акрилатным составом для защиты от внешней среды.

Конструкция и принцип работы оптического волокна

Оптическое волокно состоит из сердцевины (в некоторой литературе называется сердечник) и оболочки, материалом для которых является плавленый кварц.

Схематичное изображение конструкции оптического волокна
Конструкция оптического волокна

Несмотря на то, что обе части волокна сделаны из кварцевого стекла, они обладают разными показателями преломления: сердцевина имеет более высокий показатель преломления, оболочка – меньший. Сердцевина волокна служит для передачи светового потока, в то время как оболочка нужна для создания условий для явления полного внутреннего отражения.

Внутреннее отражение – это явление отражения электромагнитной волны (свет тоже является электромагнитной волной)от границы раздела двух сред (отмечено на рисунке ниже).

Явление внутреннего отражения в волокне на схеме
Явление полного внутреннего отражения в волокне

Для появления данного эффекта, волна должна подаваться из оптически более плотной среды в менее плотную, в таком случае отражение волны пройдёт без потери энергии импульса. Благодаря полному внутреннему отражению световой поток в рамках оптического волокна способен преодолевать значительные расстояния, от сотен метров до сотен километров.

При деформации (изгибе) оптического волокна условия для эффекта полного внутреннего отражения нарушаются и часть светового потока выходит в оболочку.

Схема затуханий на изгибе оптоволокна
Возникновение затуханий на изгибе волокна

Выход части энергии света в оболочку приводит к затуханию передаваемого оптического сигнала, поэтому у любого оптического кабеля есть значения минимального радиуса изгиба, соблюдения которого, гарантирует отсутствия дополнительных затуханий, связанных с деформацией волокна.

Типы оптических волокон

Оптические волокна делятся на две группы: многомодовые и одномодовые. Конструктивно они отличаются только диаметром сердцевины: у многомодовых волокон, она больше длины волны, передаваемых сигналов, за счёт чего по волокну передаётся несколько оптических мод (лучей), у одномодовых, сердцевина меньше длины волны сигнала и это позволяет передавать только одну моду.

Процесс передачи света в одномодовых и многомодовых волокнах
Передача света в одномодовых и многомодовых волокнах

Любое оптическое волокно характеризуется 3 основными параметрами:

  1. вносимое затухание;
  2. дисперсия сигнала;
  3. ширина полосы пропускания.

Все 3 параметра связаны друг с другом. График собственных потерь в волокне позволяет оценить взаимосвязь между полосой пропускания и вносимыми потерями. Дисперсия же в большей степени связана с типом волокна и с длиной волны передачи.

Собственные потери в волокне, изображенные на графике
График собственных потерь в волокне

На графике хорошо видны 3 основных спектральных диапазона наиболее подходящих для передачи световых импульсов. Эти диапазоны называются – окна прозрачности. Всего в современных оптических волокнах выделяют 5 окон прозрачности:

  1. Первое окно прозрачности – 850 нм, задействовано только в многомодовых волокнах;
  2. Второе окно прозрачности – 1300 нм, используется как в многомодовых, так и в одномодовых волокнах;
  3. Третье окно прозрачности – 1550 нм, используется для передачи сигналов в одномодовых волокнах;
  4. Четвёртое окно прозрачности – 1580 нм, является «расширением» третьего окна прозрачности в современных одномодовых волокнах;
  5. Пятое окно прозрачности – 1400 нм, используется в одномодовых волокнах и актуально только для современных стандартов волокна, таких как G.652C или G.652D.

Многомодовое волокно – Multi Mode Fiber (MMF)

Многомодовые волокна – это оптические волокна с диаметром сердцевины, большим чем передаваемая длина волны, что приводит к распространению по световоду нескольких оптических мод. Из-за многомодового режима в данном типе волокон наблюдается явление межмодовой дисперсии, которое значительно снижает безретранслиционную дальность распространения сигналов.

Диаметр оболочки у данного типа волокон может быть, как 250 мкм, так и 125 мкм, последнее на сегодняшний день является более распространённым. Диаметр сердцевины составляет 62,5 мкм для категории ОМ1 и 50 мкм для категорий ОМ2-ОМ5.

Схема сравнения диаметра сердцевины ОМ1 и ОМ2-5
Сравнение диаметра ОМ1 и ОМ2-5

Световые сигналы в многомодовых волокнах могут передаваться в первых 3-х окнах прозрачности, но фактически для передачи используются первое и второе окно.  Для генерации сигналов используют лазеры LED и VCSEL. Они достаточно просты и недороги в производстве, что является преимуществом.

Использования первых 2-х окон прозрачности накладывает значительные ограничения на ширину полосы пропускания, в связи с чем в рамках многомодовых кабельных сетей практически не встречается спектрального уплотнения. Первое волокно, с достаточной для уплотнения полосой пропускания в первом окне прозрачности, представили в 2016 году – MMF OM5. Это волокно позволяет организовать систему спектрального уплотнения по технологии SWDM (Short Wavelength Division Multiplexing), с рабочим диапазоном 846 – 953 нм. Напомним, что технология позволяет мультиплексировать и передавать 4 длины волны в рамках одного многомодового волокна.

В данный момент существует 5 категорий MMF волокон для телекоммуникационных сетей:

  1. ОМ1. Пропускная способность 100Мбит/с на расстояние до 2000 метров, поддерживаются волны 850 и 1300 нм. Устаревший тип волокна, который в наше время почти не используется.
  2. ОМ2. Разработано для приложений 1.25Гбит/с до 550 м, на волнах 850 и 1300 нм, также поддерживает скорость 10Гбит/с до 82 м. Используется оболочка оранжевого цвета.
  3. ОМ3. Оптимизировано для 10GbE до 300м на волне 850 нм. Маркируется голубым цветом (аква).
  4. ОМ4. Оптимизировано для лазеров VCSEL 850 нм. Предназначено для передачи 40G (350 м) и 100G (100м) сигналов в центрах хранения данных. Для данной категории используется фиолетовый цвет (фуксия). Данная категория многомодового волокна наиболее актуальная на сегодняшний день.
  5. ОМ5. Данная категория волокна разработана для использования технологии SWDM (коротко – волновое мультиплексирование), в которой используется 4 длины волны – 850, 880, 910 и 940 нм. Возможна передача 100G (4x25G) на расстояние до 150 м и 40G (4x10G) до 440 м. Категории ОМ5 присвоен цвет лайма (ярко-зелёный).
Таблица категорий OM для сетей связи
Сводная таблица по категориям ОМ

По совокупности качеств, MMF волокна нашли применение в локальных сетях, организации соединений в пределах одного здания или рядом стоящих зданий. Наибольшее распространение они получили в серверных и центрах обработки данных.

Одномодовое волокно – Single Mode Fiber (SMF)

Одномодовые волокна – это оптические волокна с диаметром сердцевины меньшим, чем передаваемая длина волны. За счёт чего в рамках волокна передаётся одна световая мода. Диаметр оболочки у одномодовых волокон зачастую составляет 125 мкм, диаметр сердцевины 9 мкм. Современные SMF волокна прозрачны во всех 5 окнах прозрачности, но первое (850 нм) как правило, не используется.

В одномодовых волокнах существует явление хроматической дисперсии. Наибольшее влияние оно оказывает на высокоскоростные сигналы от 10 Гбит/с и выше. Суть этого явления заключается в уширении импульса сигнала в процессе прохождения волокна, то есть чем больше расстояние передачи, тем сильнее исказиться сигнал. Данное явление может привести к «не читаемости» светового импульса при одиночной передачи или к наложению сигналов. Накладываются сигналы друг на друга в рамках системы спектрального уплотнения. Обе ситуации приводят к возникновению ошибок передачи данных. Для борьбы с этим явлением используют разные инструменты:

  • Компенсаторы дисперсии – устройства, которые устанавливают на линии, в составе системы уплотнения. Изготавливаются из специального волокна со смещенной дисперсией или на основе решётки Брэга;
  • Различные механизмы кодирования сигнала, например, FEC – механизм коррекции ошибок, использующий избыточное кодирование или CDR – механизм восстановления синхроимпульсов.
Схема импульса сигнала в одномодовом волокне
Схематичное изображение импульса сигнала до и после дисперсии

Важным преимуществом одномодовых волокон является широкий диапазон пропускания, от 1260 нм до 1620 нм. Это позволяет использовать системы спектрального уплотнения xWDM, для передачи сигналов на разных длинах волн в одном волокне. Таким образом, можно увеличить пропускную способность волокна, используя их с большей эффективностью. В данный момент разработано несколько систем уплотнения:

  • CWDM – грубое спектральное уплотнение. Использует 18 длин волн с шагом 20 нм, во всём доступном диапазоне 1270-1610 нм. Используется в городских сетях;
  • DWDM – плотное спектральное уплотнение. Позволяет использовать 44 или 88 длин волн с шагом 0,8 или 0,4 нм соответственно. Работает в диапазоне 1530 – 1625 нм, что позволяет использовать оптические усилители. Технология DWDM разработана для создания протяжённых магистралей с высокой пропускной способностью;
  • LWDM и MWDM относительно молодые технологии, созданные для сетей 5G со скоростью передачи данных ≥25 Гбит/с. Используют наработки технологий CWDM и DWDM. Рабочий диапазон лежит в области первого окна прозрачности 1310 нм, т.к. хроматическая дисперсия почти не оказывает влияния на передаваемые сигналы.

В телекоммуникационных сетях связи используется несколько типов одномодовых волокон:

  • Стандартное G.652D – наиболее распространённый и широко применяемый тип. Используется в локальных и городских сетях. Зона нулевой дисперсии расположена в области волны 1310 нм. Предыдущие 3 модификации G.652A, G.652B, G.652C в данный момент не актуальны;
  • Волокно устойчивое к изгибам G.657 отличается от G.652D тем, что предназначено для сетей доступа и локальных сетей. Оно обладает уменьшенным радиусом изгиба до 7,5 мм, что существенно снижает потери при прокладке внутри зданий и помещений;
  • Волокно со смещённой ненулевой дисперсией G.655, разработано для систем спектрального уплотнения. Длина волны отсечки сдвинута с 1260 нм на 1450 нм, зона нулевой дисперсии сдвинута в третье окно прозрачности. Существует 5 модификаций, от А до Е. Данный тип волокон широко используется в междугородних линиях связи, протяжённостью более 100 км;
  • Специализированные волокна. Существуют стандарты волокон – G.653, G.654, G.656. Каждый из них узко специализирован и не имеет широкого распространения.

Пластиковое (полимерное) волокно – Plastic/Polymer Optical Fiber (POF)

Данный вид оптических волокон является ответвлением от описанных выше и имеет значительные отличия от них. Как следует из названия, сердечник и оболочка сделаны из пластика, в основном используется акриловое стекло и полистирол. Важным отличием пластиковых волокон являются увеличенные размеры, так сердцевины составляет 980 мкм, а оболочки 1 мм.

Схема сравнения диаметров волокон разных типов
Сравнение диаметров волокон SMF, MMF, POF

Из-за большого диаметра сердечника, пластиковые волокна функционально являются многомодовыми. Они так же наследуют явление межмодовой дисперсии, которая в них выражена ещё сильнее, что приводит к снижению максимальной дальности и скорости передачи. При этом пластиковые волокна гораздо проще в использовании. Относительно большие габариты позволяют уменьшить допуски при изготовлении коннекторов, что позитивно сказывается на их цене. Оконцовка пластиковых волокон также не требует особых инструментов, иногда достаточно обычных ножниц.

Для передачи данных в POF о волокнах используют лазеры с длиной волны 650 нм, из видимого диапазона излучения, которые также проще и дешевле в изготовлении.

Из-за совокупности этих качеств, пластиковые волокна, называют «бытовыми». Они хорошо подходят для домашнего использования, где расстояния редко превышают 100 м, например, в цифровых бытовых приборах, домашних сетях и некоторых промышленных сетях. Так же пластиковые волокна могут использоваться в автомобилях, благодаря компактным габаритам и малому весу.

Заключение

У каждого волокна есть свои особенности и сфера использования. Пластиковые волокна POF ограничены в расстоянии и скорости передачи, но просты в изготовлении и использовании. Многомодовые волокна MMF обладают низкой стоимостью, идеальны для дата-центров и серверных. Одномодовые волокна SMF наиболее универсальны в телекоммуникационных сетях, подходят для организации соединений на любые расстояния от нескольких метров до сотен километров. 

Любые оптические волокна имеют положительные свойства и особенности:

  • Компактные размеры и малый вес упрощают прокладку и монтаж кабелей, а также сокращают используемое стоечное пространство;
  • Сигнал передаётся при помощи света, вследствие чего он защищён от помех электромагнитного излучения;
  • Широкий диапазон пропускания позволяет использовать несколько несущих длин волн для передачи множества сигналов, тем самым максимально эффективно использовать каждое волокно в кабеле.

Но волокна не лишены и недостатков, к ним можно отнести:

  • Чувствительность к температуре. Оптические кабели нельзя прокладывать при отрицательной температуре окружающей среды. В стеклянных волокнах появляются трещины, которые приводят к высокому затуханию и отражению;
  • Относительная сложность монтажа и эксплуатации, для которых необходим специальный инструмент и подготовленный специалист.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *